Interspecific Plant Interactions Reflected in Soil Bacterial Community Structure and Nitrogen Cycling in Primary Succession

نویسندگان

  • Joseph E. Knelman
  • Emily B. Graham
  • Janet S. Prevéy
  • Michael S. Robeson
  • Patrick Kelly
  • Eran Hood
  • Steve K. Schmidt
چکیده

Past research demonstrating the importance plant-microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study, we sought to examine how emblematic shifts from early successional Alnus viridus ssp. sinuata (Sitka alder) to late successional Picea sitchensis (Sitka spruce) in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield to delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. We show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate significantly alters the composition of these microbial communities in large part by driving declines in taxa that are enriched by alder, including bacterial symbionts. We found these effects to be spruce specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Such insights bolster theory relating the importance of plant-microbe interactions with late-successional plants and interspecific plant interactions more generally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nutrient Addition Dramatically Accelerates Microbial Community Succession

The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients--important dri...

متن کامل

Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession

The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth's biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest...

متن کامل

Complex plant–soil interactions enhance plant species diversity by delaying community convergence

1. A plant that causes specific changes to soil biota may either positively or negatively affect the performance of the plant that subsequently grows in that location. These effects, known as plant–soil feedback, can affect plant species diversity at multiple spatial scales. 2. It has been hypothesized that positive plant–soil feedback reduces alpha (local) diversity by allowing dominance by ea...

متن کامل

Soil bacterial community succession during long-term ecosystem development.

The physicochemical and biological gradients of soil and vegetative succession along the Franz Josef chrono sequence in New Zealand were used to test whether bacterial communities show patterns of change associated with long-term ecosystem development. Pyrosequencing was conducted on soil-derived 16S rRNA genes at nine stages of ecosystem progression and retrogression, ranging in age from 60 to...

متن کامل

Plant Phylogeny and Life History Shape Rhizosphere Bacterial Microbiome of Summer Annuals in an Agricultural Field

Rhizosphere microbial communities are critically important for soil nitrogen cycling and plant productivity. There is evidence that plant species and genotypes select distinct rhizosphere communities, however, knowledge of the drivers and extent of this variation remains limited. We grew 11 annual species and 11 maize (Zea mays subsp. mays) inbred lines in a common garden experiment to assess t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018